Telegram Group & Telegram Channel
Lewinson E. Python for Finance Cookbook.pdf
32.8 MB
Lewinson E. Python for Finance Cookbook.pdf

Use powerful Python libraries such as pandas, NumPy, and SciPy

In this book, you’ll cover different ways of downloading financial data and preparing it for modeling. You’ll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, and RSI, and backtest automatic trading strategies. Next, you’ll cover time series analysis and models such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and Fama-French's Three-Factor Model. You’ll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you’ll work through an entire data science project in the finance domain. You’ll also learn how to solve credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models.



tg-me.com/python_powerbi/212
Create:
Last Update:

Lewinson E. Python for Finance Cookbook.pdf

Use powerful Python libraries such as pandas, NumPy, and SciPy

In this book, you’ll cover different ways of downloading financial data and preparing it for modeling. You’ll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, and RSI, and backtest automatic trading strategies. Next, you’ll cover time series analysis and models such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and Fama-French's Three-Factor Model. You’ll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you’ll work through an entire data science project in the finance domain. You’ll also learn how to solve credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models.

BY Python 🐍 Work With Data


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/python_powerbi/212

View MORE
Open in Telegram


Python Work With Data Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Python Work With Data from fr


Telegram Python 🐍 Work With Data
FROM USA